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NEWTON-RAPHSON ITERATION

Newton-Raphson iteration is a numerical technique used for finding approximations

to the real roots of the equation f (gb) = 0 given in the form of an iterative equation
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where n denotes the n” iteration and derivative f’ (d))

{f (gb)} This iterative

and ¢ reaches an
acceptably small value. The method is attributed to Isaac Newton (1643-1727) and

Joseph Raphson (1648-1715) and some historical information is given below.

Newton-Raphson iteration can be used to solve certain types of equations that occur

in surveying computations. Some examples may demonstrate its usefulness.

Example 1

In GEOM2089 Surveying 2, Assignment 2 (Subdivision Problems) there is a question
(Problem Sheet 3, question 2) that eventually leads to an equation that is essentially
the difference between the area of a triangle and the area of a sector of a circle. And
these areas are both functions of an angle 6 at the centre of a circular curve of radius

R. A value for 0 is required in order to solve the problem.

The equation is
1 : L 2
—qRsinf ——R0 =6078.79 m (2)
2 2

Now ¢ = 764.944 m and the radius R = 500 m and the equation becomes

191236 sin 6 — 1250000 = 6078.79 (3)

This is a trigonometric equation and there is no simple solution for # but an

approximation for the true value can be found by Newton-Raphson iteration.
First re-arrange equation (3) so that the right-hand side is equal to zero, giving

191236 sin @ — 1250006 — 6078.79 = 0 (4)
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And we may write this equation in the general form f (0) = 0 where
f(H)zasin@—f—b@—f—c (5)

and a = 191236, b = —125000, ¢ = —6078.79

The derivative f'(@) = @{f(Q)} is

f’(@)zacos@+b (6)

And now 6 can be found from the iterative formula
(7)

A starting value 6, (the value of ¢ for n =1) must be determined before equation
(7) can be used. If 6, is close to the true value then only a small number of
iterations will be required for an acceptably accurate value. That is, the differences
between results 6,60, .0, ,,.... get smaller and smaller and the process can be
terminated when a difference reaches an acceptably small value. In such cases, the
process is said to converge on the true value. On the other hand, if 6, is far from the
true value, then a large number of iterations will be required for a solution, or in

some cases, the process will diverge (increasing differences between successive

iterations) and there will be no real solution.

In this example, we require a value of 6 accurate to 1" of arc and we adopt a starting

value of 8 = 2°. The results of the iterative process are shown in Table 1.

£(6)
Iteration flo 1o
n=1 2° -3768.072979 66119.504196 -0.056989
n =2 5° 15' 54.79" -16.729369 65429.096377 -0.000256
n—=3 5% 16' 47.53" -0.000574 65424.603105 | -8.774986E-09
n—4 5° 16' 47.53"

Table 1: Newton-Raphson iteration for 6
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The answer 0 = 5°16’'48"” (nearest 1" of arc) is achieved after 3 iterations. Note that

@ in equation (7) is in radians.

Example 2

In the Geocentric Datum of Australia Technical Manual (ICSM 2002) the formula for

meridian distance m on the ellipsoid is given in the form
m=a {Bogb — B, sin2¢ + B, sin4¢ — B, sin 6¢} (8)
where m is the distance along a meridian of the reference ellipsoid from the equator

to the point having latitude ¢, a is the semi-major axis of the reference ellipsoid and

the coefficients B, B,, B, and B, are given by

Bo —1l——¢" ——¢" — —
4 64 256

B2 :§ 624—1 4_}_£ 6

8 4 128

15 3 )
B, =—le' +=¢°

256 4
36 :ﬁeﬁ

3072

Equations for B, B,, B, and B, are the opening terms of series expressions involving

even powers of the eccentricity e of the ellipsoid. They exclude all terms greater than

e’. Note that e’ = f (2 —f ) where fis the flattening of the ellipsoid.

For the Geodetic Reference System 1980 (GRS80) reference ellipsoid, where the semi-
major axis ¢ = 6378137 m and flattening f = 1/298.257222101, equation (8) can be

written as

m = 111132.952549 ¢° — 16 038.508 412 sin 2¢) 4 16.832201sin 4¢ — 0.021801sin 6¢ (10)

Now, suppose that the meridian distance m = 4186320 m on the GRS80 ellipsoid.
What is the latitude ¢ ?

There is no simple solution for ¢, but Newton-Raphson iteration may be used to

obtain an acceptable value by re-arranging equation (10) into the general form

f<¢) = 0 where
f(¢):A0¢°—A?sianb+A4sin4¢—AGSin6¢—m (11)
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and the derivative f’((b) = %{f (gb)} is

f’(qﬁ) = A, — 24, cos2¢ + 44, cosdp — 64, cos b6

And now ¢ can be found from the iterative formula

With A =111132.952549
A, =16038.508 412
A, =16.832201
A =0.021801

6

m =4185320

Geospatial Science

(12)

(13)

The latitude ¢ is required correct to 0.0001" of arc (equivalent to approximately
0.003 m) and the results of the iterative process are shown in Table 2. A starting
value for ¢ can be obtained by considering m to be an arc length on a sphere of

radius a; i.e.,

p="1= % = 0.656354669 radians = 37° 36'23" (nearest 1" of arc)
a
£(9)
Iteration [0) flo fl¢ YT
() () e
n 1 37° 36' 23" -22509.963230 | 102887.465755 | -0.218782366
n—9 37° 49' 30.6165" 4311.57399 | 103124.056405 | 0.041809585
n—3 37° 47' 00.1020" -2867.628390 | 103078.806316 | -0.027819767
= 4 37° 48' 40.2532" 920.161130 | 103108.913422 | 0.002135299
n K 37° 48' 32.5664" -16.834100 | 103106.602360 | -0.000163269
6 37° 48' 33.1541" 1.287590 103106.779073 | 0.000012488
h T 37° 48' 33.1092" -0.098480 | 103106.765556 | -0.000000955
b8 37° 48' 33.1126" 0.00753 103106.766590 | 0.000000073
ne9 37° 48' 33.1123" -0.000580 | 103106.766511 | -0.000000006
= 10 37° 48' 33.1124" 0.000040 103106.766517 |  3.879E-10
o —11 379 48' 33.1124"

Table 2: Newton-Raphson iteration for latitude ¢
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The answer ¢ = 37°48’33.1124" (nearest 0.0001" of arc) is achieved after 10

iterations.

Some historical information on Newton-Raphson Iteration

Newton-Raphson iteration is a numerical technique used for finding approximations
to the roots of real valued functions and is attributed to Isaac Newton (1643-1727)
and Joseph Raphson (1648-1715). The technique evolved from investigations into
methods of solving cubic and higher-order equations that were of interest to
mathematicians in the 17th and 18th centuries. The great French algebraist and
statesman Francois Viete (1540-1603) presented methods for solving equations of
second, third and fourth degree. He knew the connection between the positive roots
of equations and the coefficients of the different powers of the unknown quantity and
it is worth noting that the word "coefficient" is actually due to Viete. Newton was
familiar with Viete's work, and in portions of unpublished notebooks (circa 1664)
made extensive notes on Viéte's method of solving the equation z° 4 30z = 14356197
and also demonstrated an iterative technique that we would now call the "secant

method". In modern notation, this method for solving an equation f (m) =0 is:

n=o - f@)/ ACARYIC

x’ﬂ, - xn*
In Newton's tract of 1669, De analysi per&quationes numero terminorum infinitus

1

('On analysis by equations unlimited in the number of their terms') — chiefly noted for
its initial announcement of the principle of fluxions (the calculus) — is the first
recorded discussion of what we may call Newton's iterative method. He applies his
method to the solution of the cubic equation z° —2z —5 = 0 and there is no reference
to calculus in his development of the method; which suggests that Newton regarded
this as a purely algebraic procedure. The process described by Newton required an
initial estimate z, hence r =z + p where p is a small quantity. This was substituted
into the original equation and then expanded using the binomial theorem to give a
polynomial in p as
(xo —l—p)g +2<x0 +p)—5 =0
x; +3x§p+3x0p2 + p’ -2, +2p—-5=0
P’ —i—39v0p2 +(3x§ —|—2>p =5 -2z, —xg
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The second and high-order polynomial terms in p were discarded to calculate a
numerical approximation p, from 3(x§ + 2) p, =521, — m’g Now p = p, +¢ (¢ much
smaller than p, ) is substituted into the polynomial for p, giving a polynomial in g,
and a numerical approximation ¢, calculated by the same manner of discarding
second and higher-order terms. This laborious process was repeated until the small
numerical terms, calculated at each stage, became insignificant. The final result was
the initial estimate z, plus the results of the polynomial computations
z =1, +p, +q, + - instead of successive estimates r being updated and then used
in the next computation. This process is significantly different from the iterative
technique currently used and known as Newton-Raphson.
In 1690 Joseph Raphson published Analysis aequationum universalis in which he
presented a new method for solving polynomial equations. As an example, Raphson
considers equations of the form a’ —ba —c = 0 in the unknown a and proposes that if
g is an estimate of the solution, then a better estimate can be obtained as g + x
where

c+bg—g°

3¢° —b

Formally, this is of the form g+ 2 = g — f(g)/]“(g) with f(a) =a’ —ba —c. Raphson
then applies this formula iteratively to the equation 2z’ —2z —5 = 0. Raphson's
formulation was a significant development of Newton's method and the iterative
formulation substantially improved the computational convenience. The following
comments on Raphson's technique, recorded in the Journal Book of the Royal Society
are noteworthy.

“30 July 1690: Mr Halley related that Mr Ralphson [sic] had Invented a method of
Solving all sorts of Aquations, and giving their Roots in Infinite Series, which
Converge apace, and that he had desired of him an Equation of the fifth power to be
proposed to him, to which he return'd Answers true to Seven Figures in much less
time than it could have been effected by the Known methods of Vieta.”

“17 December 1690: Mr Ralphson's Book was this day produced by E Halley, wherin
he gives a Notable Improvement of ye method of Resolution of all sorts of Equations
Shewing, how to Extract their Roots by a General Rule,which doubles the known
figures of the Root known by each Operation, So yt by repeating 3 or 4 times he finds

them true to Numbers of 8 or 10 places.”
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It is interesting to note here that Raphson's technique is compared to that of Viete,
while Newton's method is not mentioned, although it had, by then, appeared in
Wallis' Algebra. In the preface to his tract of 1690, Raphson refers to Newton's work
but states that his own method is “not only, I believe, not of the same origin, but
also, certainly, not with the same development”. The two methods were long
regarded by users as distinct, but the historian of mathematics, Florian Cajori writing
in 1911 recommended the use of the appellation ‘Newton-Raphson’ and this is now
standard in mathematical texts describing Raphson's method with the notation of
calculus.

The historical information above is drawn from the articles by Thomas (1990), and

Tjalling (1995).

Additional historical information on this method and Thomas Simpson's contribution
can be found in Kollerstrom (1992); in which the author makes a very good case for
Thomas Simpson FRS (1710-61) as the inventor of the Newton-Raphson iteration. A
copy of Kollerston's paper is attached as well as some pages from Thomas Simpson's
paper in 1740 where he introduces his “new Method for the Solution of all Kinds of
Algebraical Equations in Numbers ...”; the first application of the calculus (Newton's

fluxions) to an iterative approximation technique.
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Thomas Simpson and ‘Newton’s method of
approximation’: an enduring myth

NICK KOLLERSTROM*

A resurgence of interest has occurred in ‘Newton’s method of approximation’ for deriving

the roots of equations, as its repetitive and mechanical character permits ready computer
use.! If x = o is an approximate root of the equation f{x) = 0, then the method will in most

Lo R UG Y S
a D 4pproximation as

a—fla)/f(a), 1

where f’(x) is the derivative of the function into which a has been substituted.? Older
books sometimes called it ‘the Newton-Raphson method’, although the method was
invented essentially in the above form by Thomas Simpson, who published his account of
the method in 1740.% However, as if through a time-warp, this invention has migrated back
in time and is now matter-of-factly placed by historians in Newton’s De analysi of 1669.%
This paper will describe the steps of this curious historical transposition, and speculate as
to its cause.

What is today known as ‘Newton’s method of approximation’ has two vital
characteristics:: it is fterative, and it employs a differential expression. The latter is simply
the derivative f’(x) of the function, resembling a Newtonian fluxion in being based upon
a theory of limits but not conceptually identical with it. The method uses the fundamental
equation (1) repetitively, inserting at each stage the (hopefully) more accurate solution.
This paper will argue that neither of these characteristics applies to the method of
approximate solution developed by Newton in De analysi,® which also appeared in his De
methodis fluxionum et serierum infinitorum;® and that the method of approximation

* Deparmment of History and Philosophy of Science, University College London.

I am most grateful to Professor Ivor Grattan-Guinness for substantial assistance in elucidating these themes and
for critical advice.

1 H. Peitgen and P. Richter, The Beauty of Fractals, Berlin, 1986, 18.

2 See e.g. C. Tranter and C. Lambe, Advanced Level Mathematics, 4th edn, London, 1980, 302.

3 T. Simpson, Essays...on Mathematics, London, 1740, 81.

4 J. Pepper, ‘Newton’s mathematical work’, in Let Newton Be! (ed. ]. Fauvel et al.), Oxford, 1988, 63—80:
‘Newton made a major breakthrough [in De analysi] by introducing what is now known as the Newton—-Raphson
method’ (p. 73). H. Goldstine, A History of Numerical Analysis from the Sixteenth Century through the
Nineteenth, Springer-Verlag, New York, 1977, 64-7. D. M. Burton, The History of Mathematics, an Introduction,
1986, 408. .

5 L. Newton, De analysi (ed. W. Jones), London, 1711; The Mathematical Papers of Isaac Newton (ed. D. T.
Whiteside), Cambridge, 1968, ii, 206—47. see 218~19.

6 1. Newton, De methodis fluxionum et serierum infinitorum’, London, 1736 (English translation J. Colson),
Whiteside, op. cit. (5), iii, 32-353; see 43-7, ‘The reduction of affected equations’.
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published by Joseph Raphson in his Analysis aequationum universalis of 16907 was
iterative — indeed was the first such method to be iterative — but was not expressed in
derivative or fluxional terms.

NEWTON’S METHOD

D. T. Whiteside described the method of approximate solution given in Newton’s De
analysi as ‘essentially an improved version of the procedure, expounded by Viete and
simplified by Oughtred’.® John Wallis, in the first edition of his Algebra (1685), extolled
the method as a fine British achievement,® and we shall here follow his account of it.
Taking the cubic equation y*—2y—S5 = 0, as the example given in De analysi, he started
with the approximate solution of 2. Let the exact solution be 2+ p, where p is small, and
substitute 2+p into the equation in place of y. This generates a new cubic equation,
namely p®+6p*+10p = 1. As p is small, its powers are ignored, yielding the approximate
solution 10p = 1 or p = 0.1. Next, 0.1+g is inserted in place of p to form another new
equation, and so on. This is continued to achieve any desired level of accuracy.

That was Newton’s method. To quote from W. Frend’s account of it in 1796, it
¢ proceeds by considering the new, or transformed, equation (resulting from the substitution
of @+ z, or a—z, instead of x, in the original equation)’.’® It took only the first-order terms
in a binomial expansion, a subject with which Newton’s De analysi was much concerned.
It did not employ any fluxional calculus.

RAPHSON’S METHOD

When Raphson’s method was announced to the Royal Society in July of 1690, there was
emphasis on its innovative nature:

Mr Halley related that Mr Ralphson [sic] had Invented a method of Solving all sorts of Aquations
[...] and that he had desired of him an Equation of the fifth power to be proposed to him, to which
he return’d answers true to Seven Figures in much less time than it could have been effected by
the Known methods of Vieta.!!

Raphson published his method as a tract in 1690. It had a preface referring to Newton,
among several other mathematicians, in which Raphson declared that his own method was
somewhat similar (‘aliquid simile’) to Newton’s earlier account.'® Raphson removed that
preface when publishing his method as a book in 1697. He then referred solely to Viete as
the ancestor of his method. Later in the work (section VI) he referred to the English
mathematicians Harriot and Oughtred. An Appendix was added, referring amongst other
matters to Newton’s binomial theorem.

R

4 7] Raphson, Analysis aequationum universalis ..., London, 1690.
8 Whiteside, op. cit. (5), ii, 218.
9 J. Wallis, A Treatise of Algebra both Historical and Practical, London, 1685, 338.
10 W. Frend, The Principles of Algebra, London, 1796, 456.
11 Journal Book of the Royal Society of London, 30 July 1690.
12 Raphson, op. cit. (7), Preface. Goldstine said of this 1690 work, ‘Here Raphson acknowledges Newton as
! the source of the procedure’ (Goldstine, op. cit. (4), 64). That is not the view here taken.
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Raphson presented his method as follows. Taking as an example the equation ba —agaa

= ¢ (which we would write as 4*—ba+ ¢ = 0), let an approximate solution be g- Then, if
a more accurate solution is ‘g +x,

_c+ggg—bg
X =——"
b—3gg

The quotient expression was obtained by a two-step procedure.’® In the above example,
one substituted (g+x) for 4, then expanded the power terms to give a larger equation this
was a straightforward binomial expansion. The second step was to extract the terms in x:
the terms which multiplied x in this example were (b—3gg), and these became the quotient.

Iterating this procedure, Raphson explained, would give any desired level of accuracy.
He elaborated his method only within the context of polynomial equations, without
attempting to deal with reciprocal or square root functions. His worked examples
contained terms up to the seventh power.

This was Raphson’s method, which he said he had derived from Viete. If it sounds odd
today, it is because once the calculus technique was established, such ad boc rules could
be forgotten. Nowadays, it is invariably viewed in calculus terms — in the above case, the
derivative of (a®—ba+c) is (3a®—b); one divides the original function by its derivative,
substituting the approximate solution g to obtain the increment x, whereby it is improved.
For Raphson no such general concept appeared to be available. His book contained many
pages of recipes showing how for each specific algebraic expression one could obtain the
required quotient: for example the quotient for gggg was 4ggg. However, no general proofs
of these recipes were provided; they were obtained using the two-step procedure.

Even after De 'Hépital’s Analyse d’infiniments petits was published in 1696, and rapidly
became the textbook on the new Leibnizian differential and integral calculus, Raphson
republished his method without alteration. As testimony to the level of British awareness
of the new differential or fluxional procedures in the 1690s, this situation could have been
referred to by Raphson in his History of Fluxions published in 1715, though this might well
have compromised the staunchly pro-British tenor of its argument.

Newton’s fluxional method, as it featured in Wallis’s 1693 Opera mathematica,** would
hardly have sufficed to deliver the required quotient term: an implicit differentiation
method was there outlined which left the time-based fluxions % and y embedded in the
equation.® To obtain the gradient of a curve it was necessary further to divide y by %, a
procedure which only developed in the next century. In 1695, de Moivre was still using the
terms ‘fluxion” and ‘moment” to represent infinitely small quantities.'® Raphson over this
period evidently saw nothing to make him recast his method into a fluxional format for the
second edition of his History of Fluxions. In this he was not alone: Halley in 1694 took

13 Raphson, op. cit. (7), 1-2.

14 J. Wallis, Opera Mathematica, ii, London, 1693, 391-6.

15 For a different view see H. Bos, ‘ Newton, Leibniz and the Leibnizian tradition’ in From Calculus to Set
Theory 1630-1910 (ed. 1. Grattan-Guinness), London, 1980, Ch. 2, 49-93, on 88.

16 A.de Moivre, ‘Doctrinae fluxionum...’, Philosophical Transactions (1695), 19, 52-7. See F. Cajori,
Conceptions of Limits and Fluxions in Great Britain from Newton to Woodhouse, 1919, Chicago and London,
39.

10
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twelve pages of the Philosophical Transactions giving his method of solving polynomial
equations by successive approximation,'’ based largely on the method of a Frenchman,
Thomas de Lagny,® and one there finds no sign of the new fluxional method. This should
not surprise us, as new ideas take a while to become accepted.

Raphson himself first referred to the fluxional method in his Mathematical Dictionary
of 1702.1° The reference he cited for it was Book II of Wallis’s Opera (1693). His account
was polemical, relating to the storm of controversy then gathering: Newton’s fluxional
method, Raphson wrote, ‘passes there [Germany] and in France, under the name of
Leibniz’s differential calculus’. This reference made no allusion to methods of approximate
solution for equations.

The Appendix to the second edition of Raphson's Analysis (1697) referred to the work
of several contemporary mathematicians: Halley, de Lagny, Abraham Sharp (who had
found 7 to fifty places) and then fourthly Isaac Newton. This is the sole reference to
Newton in Raphson’s final statement of his method, so let us be clear as to what is there
acknowledged. It referred to chapter 91 of Wallis’s Algebra of 1685, where Newton’s
procedures for binomial expansion were described (with infinite series for reciprocal
functions), and not to chapter 94, which gave Newton’s method of approximation. We
may assume that he saw no need to refer to this latter section.

Raphson was there impressed by the new nomenclature for powers of variables that
Newton was using, as advocated by Wallis, for example writing aaz as a®. Raphson gave
several examples of how his computations could be rewritten in this manner. His Appendix
also referred to Newton’s method of infinite series expansions; however, as none of
Raphson’s worked examples dealt with fractional or negative powers — which require
those expansions — it is doubtful whether he can be said to have incorporated these into his
method. It is quite evident that Raphson in his second edition of 1697 did not make any
acknowledgement to Newton of the kind that subsequent historians have either alleged
that he did, or assumed that he should have done.

SIMPSON’S METHOD

Thomas Simpson, FRS (1710-61), was a well-known British interpolationist, author of
“Simpson’s rule’ for obtaining the area under a curve and other results. Writing in 1740 he
described ‘A new Method for the Solution of Equations’, making no reference to any
predecessors, and affirming that: ‘as it is more general than any hitherto given, it cannot
but be of considerable use’.2® It was indeed. His fine opening words were ‘ Take the Fluxion
of the given Equation...’, from which he proceeded to a version of the rule as presented
in (1), using fluxions. His instructions here were: ‘... and having divided the whole by %,
let the Quotient be represented by A’. Fluxions were taken in the manner that Newton
described to Wallis in 1692, which left x and y terms on each side of the equation. Dividing

17 E. Halley, ‘Methodus nova accurata et facilis inveniendi radices aequationum...’, Philosophical
Transactions (1694), 18, 136-48.

18 T.F. de Lagny, Méthodes nouvelles et abrégeés pour Pextraction et Papproximation des racines, Paris,
1734.

19 ]. Raphson, A Mathematical Dictionary, London, 1702.

20 T. Simpson, Essays...on Mathematics, 1740, Preface, vii.

11
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through by % left what would nowadays be called the derivative of the function on the
right-hand side, and dy/dx on the left. This differential expression was what Simpson
referred to as ‘A’. In this manner, he applied fluxions to the approximation method.

Simpson cited five examples, including a cubic equation, a square root function, a
reciprocal and an exponential function.* It is evident that Simpson had a general
command of the fluxional technique, whereby he could obtain the quotient term for the
approximation formula.

Some might object, Simpson commented, that the method of fluxions ‘being a more
exalted Branch of the Mathematics, cannot be so properly applied to what belongs to
common algebra’.?? This indicates that he believed he was being innovative in applying the
method of fluxions to this area of mathematics. His use of a fluxion in this manner
sufficiently resembles the modern formulation for him to be credited (I suggest) as inventor
of the method.

THE METHODS COMPARED

In the eighteenth century there was debate over whether the Newton or the Raphson
method was preferable. The ‘Observations on Mr Raphson’s method’ (1796) by W. Frend
compared their relative merits, and concluded that:

with respect to the simplicity and conception of the two methods, Mr Raphson’s method seems
to be preferable to Sir Isaac Newron’s; because the former always refers back to the original
equation x*—2x = S, whereas the latter method refers to the preceding transformed equation
10z+62* = 1, which has more terms and larger coefficients than the original equation...I
consider Mr Raphson’s method of resolving them [equations] as, upon the whole, more
convenient than that of Sir Isaac Newton.®

This view was echoed in virtually identical terms by Francis Maseres, a Fellow of the Royal
Society, in a tract of nine pages comparing the two methods.?

J. L. Lagrange’s influential treatise, Résolution des équations numériques of 1798,
discussed the two methods. It referred to Newton’s method of approximation as being well
known, and refined and generalized the Newtonian method of De analysi, though without
reference to fluxions or differentials. Lagrange expressed surprise that Raphson had not
referred to Newton’s earlier work, taking the view that ‘ces deux méthodes ne sont au fond
que le méme présentée différemment’, though conceding that Raphson’s method was ‘plus
simple que celle de Newton’, because ‘on peut se dispenser de faire continuellement de
nouvelles transformées’.?

These remarks we find in one of the notes at the end of Lagrange’s treatise. Its main text
was composed in 1767—68, and twelve notes were added in the 1790s. These notes used the
‘f’(x)* notation for the ‘fonction dérivée’. He had introduced it as part of his algebraic

21 Ibid., 83-6.

22 Ibid., vii.

23 W. Frend, op. cit. (10), 456, 492.

24 F. Maseres, ‘On Mr Raphson’s Method of Resolving Affected Equations by Approximation’, in Bernoulli's
Mathematical Tracts, 1795, published by F. Maseres, London, 577-86, on 58S.

25 J. L. Lagrange, Note V, ‘Sur la méthode d’approximation donnée par Newton’, in Traité de la résolution
des équations numériques, 1st edn, Paris, 1798; 2nd edn, 1808, reprinted 1826, 122.

12
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foundation of the calculus, based upon expanding a function f{x+5) in powers of # and
defining these “fonctions’ from the coefficients of the powers. This was his own version of
the differential calculus to replace both Newton’s and Leibniz’;*® yet it is striking that he
did not use it in his note 5 comparing the approximation methods — even though he did
apply it freely in various other of these notes.?’” As Raphson had done a century earlier,
Lagrange treated the approximation methods solely in algebraic terms. This may remind
us how very innovative Simpson was being, in applying the fluxional technique within this
algebraic context.

THE MYTH BLOSSOMS

In the early nineteenth century, the mathematician Joseph Fourier presented the method
in terms of the now-universal f’(x) calculus notation, describing it as ‘le méthode
newtonienne’.2® Fourier’s writings on equations became very well known. The British
mathematicians Burnside and Panton referred to the method, using the language of
calculus, as being that of Newton and Lagrange, without mentioning Raphson. They did
refer to Simpson and the Bernoullis as having ‘occupied themselves’ with the problem.”
Similarly in Germany, Runge gave the method in Leibnizian form, attributing it to
Newton.?® Moritz Cantor reviewed the approximation methods of Newton, Raphson,
Halley and de Lagny, describing Raphson as ‘an absolute admirer and imitator of
Newton’, whose approximation method ‘greatly resembled that of Newton’.*!

Reviewing the situation in 1911, Florian Cajori concluded that the method ought
properly to be called the ‘Newton—Raphson method’;*® however, no person in the
seventeenth or eighteenth centuries adopted such a view. Cajori’s grounds for referring to
the method as ‘the Newton-Raphson method’ may have been his view that ‘If 7 is the
approximation already reached, then Newton uses a divisor which in our modern notation
takes the form f’(r)’.?® However, the Newtonian method does not inherently employ a
divisor, let alone one equivalent to f’(r).

A recent appreciation of Joseph Raphson discussed the historically perceived difference
between the two methods, concluding: ‘it is actually Raphson’s simpler (and therefore
superior) method, not Newton’s, that lurks inside millions of modern computer
programs’.* In support of this argument it presented the familiar claim that Raphson’s

26 Grattan-Guinness, op. cit. (15), Ch. 3, L. Grattan-Guinness, ‘ The emergence of mathematical analysis and
its foundational progress, 1780-1880°, p. 1135.
27 Lagrange, op. cit. (25}, 130-52.
28 ].B. ]. Fourier, Analyse des équations deéterminées, Paris, 1831, 169, 173 and 177.
29 W.S. Burnside and A. W. Panton, The Theory of Equations, London, 1881, Note B, 384-6.
30 C.Runge, ‘Separation und Approximation der Wurzeln’, Encyk. der Math. Wissenschaften, 1900, 1,
§ 740448, article IB3a (pp. 433-5).
31 M. Cantor, Geschichte der Mathematik, Leipzig, 898, iii, 114-15; also 2nd edn (1901), 119-20.
32 F. Cajori, ‘Historical note on the Newton-Raphson method of approximation’, American Mathematical
Monthly (1911), 18, 29-32, on 30.
33 Ibid., 31.
34 D. J. Thomas, ‘Joseph Raphson, F.R.S’, Notes Rec. Roy. Soc. London (1990), 44, 151-67, on 155. Thomas
here mistakenly claims (p. 155) that Newton ‘never published his version’ [of approximation method], but see
note 6 above. In addition the text of De analysi was reprinted in the Commercium epistolicum of 1713.
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method involved ‘calculation of the first derivative’, quoting the differential-based
equation given at the start of this article. The historical record hardly supports such a
viewpoint. The method of approximation inside computer programs is surely that of
Simpson.

Such attitudes endure to this day, to be found even in histories of mathematics. Boyer’s
History of Mathematics (1968) affirmed that ‘Newron’s Method’ for the approximate
solution of equations could be found in De analysi,* citing its modern formulation in terms
of a derivative f'(x). A marginally more accurate version has appeared in Makers of
Mathematics by Stuart Hollingdale (1989), which correctly described the method of
approximation given in De analysi, but then blithely asserted, ‘Newton also devised an
iterative method... first published in its original form by Joseph Raphson in 1690°.%¢

THE LURE OF MYTH

The seeds of lasting confusion were sown by Wallis in his Opera of 1693:%" he received in
August 1692 historic letters from Newton, now lost,* conraining the recipe for what would
nowadays be called implicit differentiation in fluxional terms of an equation, using the
newly-invented dot notation;* he published that method without acknowledging a
contemporary source, and alleged that the method was present in Newton’s letters of the
1670s sent to Leibniz, which was scarcely the case.*® That act needs to be seen within the
context of the controversy then beginning over the genesis of the new calculus methods.
To quote Whiteside, ‘The letters to Wallis in 1692...[were] the first significant
announcement to the world at large of the power of Newton’s fluxional method’.**

Modern scholarship has located the fairly limited extent to which Newton did compose
differential equations, in the early 1690s.** These were reformulations of dynamical issues
from his Principia, and did not include methods of approximate solution of equations. It
seems that only at the tercentenary of these events can myth and fact be disentangled.
Disputes over the birth of calculus have led mathematicians to locate such achievements
at a too-early period. The myth we have surveyed is a legacy from that dispute.

Taking the time-honoured view that Raphson used differentials or fluxions in his
method, where was he supposed to have got them from ? This always remained unspecified.
Prior to Wallis’s 1693 publication, it is not evident that there was a published source from
which British mathematicians could have derived such a method, had they so wished.

35 C. Boyer, A History of Mathematics, Princeton, 1968, reprinted 1980, 449.

36 S. Hollingdale, Makers of Mathematics, London, 1989, 179.

37 J. Wallis, op. cit. (14), 390.

38 The Correspondence of Isaac Newton, London, 1961, iii, 222-8.

39 D.T. Whiteside, *The mathematical principles underlying Newton’s Principia’, Journal for the History of
Astronomy (1790), 1, 116-38, on 119.

40 A.R.Hall, Philosophers at War, Cambridge, 1980, 94-6.

41 D. T. Whiteside, ‘Essay review of The Correspondence of Isaac Newton, Vol. I, History of Science
(1962), 1, 97. ) '
42 Whiteside, op. cit. (39), 119.
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It was, we have here argued, unequivocally the method of approximation invented by
Thomas Simpson that Fourier restated using 2 derivative notation, and which has
somehow come to gravitate within a Newtonian orbit. I found no source which credited
Simpson as being an inventor of the method. None the less, one is driven to conclude that
neither Raphson, Halley nor anyone else prior to Simpson applied fluxions to an iterative
approximation technique.

15



RMIT Geospatial Science

This page and the following pages contain extracts from a publication by Thomas Simpson in 1740. They are
the Title page, the Preface (pp. v to viii), page 1, and pages 81 to 86.

In p. vii of the Preface, Simpson describes the sixth part of his publication which is his “new Method for the
Solution of all Kinds of Algebraical Equations in Numbers ...” This new method is what is now known as
Newton-Raphson iteration.

This sixth part is contained in pages 81 to 86 where Simpson presents two cases and five examples.

This work by Simpson is referred to by Nick Kollerstrom (Thomas Simpson and ‘Newton's method of
approximation’: an enduring myth, British Journal for the History of Science (BJHS), Vol. 25, pp. 347-54,
September 1992) as evidence for his argument that Simpson should be credited with the discovery of the
Newton-Raphson iteration.
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PREFACE

® H E Reader, I prefume, will excufe me, if,
N inflead of acquainting bim, in the ufual Way,
S with the many weighty Reafons tbat induced
§ me to publifb the following Sbheets, I fball
R zake up no more of bis Time than fo give
a concife Account of the Nature and Ufe-
Julnefs of the feveral Papers that compofe this Ml.fcellany, n
the Order they are printed,

The fir, then, is concerned in determining the Apparent
Place of the Stars arifing from the progrefive Motion of
Light, and of the Eartbh in its Orbit ; which, though it be a
Matter of great Importance in Afironomy, and allowed one of
the fineff Difcoverses, yet bad it ot been fully and demonfira-
tively treated of by any Autbor, or indeed thrown into any
Method of Praétice. Now, bowever, I muf not omit to ac-
knowledge, that in the laff Volume of the Memoirs of the
RovyAL ACADEMY of SCIENCES, for the Year 1737.

('} lately

17
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v P REF A C E

lately publifbed at Paris, and brought bitber a few Weeks
Since, there is a Paper on this Subjei? by Monfieur Clairaut,
a very eminent Mathematician of that Academy; fo which
be fubjoins a Set of Praltical Rules for the Aberration sn
Right-Afcenfion and Declination only ; wherein moff of bis
Analogies are exaltly the fame as thofe inferted in this Book,
with which Dr. Bevis favoured me : For wbich Reafon I
think it proper to affure my Readers, that my Paper, toge-
ther with the Doltor's Rules, were quite printed off, and in
the Hands of feveral Friends, who defired them, before Chrift-
mas 1739. when the Severity of the Seafon interrupted for a
confiderable Time the Impreffion of this Treatife.

The fecond Paper, treats of the Motion of Bodies affelted
by Projectile and Centripetal Forces ; wberein the Inventiom
of Orbits and the Motion of Apfides, with many others of
the moff confiderable Matters in the Firft Book of Sir lfaac
Newton’s PRINCIP1A, are fully and clearly invefigated,

" The Third, fhews bow, from the Mean Amomaly of a Pk
net given, to find its true Place in its Orbit, by three feverat
Methods ; but what may beft recommend this Paper, is the
Prattical Rulein the annexed Scholium, which wsl, 1 bope,
be found of Service.

The Fourth, tncludes the 'Mistion and Patbs of Proje&iles
in refiffing Mediums, in which not enly the Equation of the
Curve defcribed according to any Law of Denfity, Refiflance,
&c. but all the moft important Matters, upon this Head, in
the Second Book of the alove-named illufirious Author, are
determined in a new, eafy, and comprebenfive Manner.

. The Fifth, confiders the Refiflances, Velocities, and Times of
- Vibration, of pendulous Bodies $n Medsums,
Tbe

18



RMIT Geospatial Science

PRETFAUCE it

The Sixth, contains a new Method for the Solution of all
Kinds of Algebraical Equations sn Numbers; wbich, as it is
more general tham any bitherto given, cannot but be of confi-
derable Ufe, though it perbaps may be objected, that the Me-
thod of Fluxions, whereon st is founded, being a more exalted
Branch of the Matbematicks, cannot be fo properly applied to
what belongs to common Algebra.

Tbe Seventh, relates ¢o the Method of fncrmm';; which
is ilinfirased by fome familiar and ufiful Examples.

The Eighth, is a fbort Invefiigation of a Theorem for find-
Ing the Sum of a Series of Ryantities by Means of their
Differences.

. Tbe Nintb, exbibits an eafy and general Way of Inveftiga-
ting the Sum of a recurring Series, 4

Thefe three lafp Papers relate chiefly to the Imventions of
Otbhers : As they are all of Importance, and are required in
other Parts of the Book, I could not well leave them entirely
untouch'd; and if I fball be thought to bave thrown any new
Light upon them, that may benefit young Proficients, 1 bave

= my End. ‘

Tbe Tenth, comprebends a new and general Method for find-
ing the Sum of any Series of Powers whofe Roots are in
Aritbmetical Progreffion, wbich may be applied with equal
Advantage to Series of other Kinds.

Tbe Eleventb, is concerned about Angular Secions and fome

remarkable Properties of the Circle, e
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The Twei jtb, includes an eajy ant expeauwu: Ma'm g‘
Reducing a Compound Fraftion to Simple Ones; the firft
Hints whereof 1 freely ackmowledge to bave recesved from
Mr. Muller's ingenious Treatifé on Conic Seftions and Fluxions.

Tbe Thirteenth and laf}, containing a general Qyadrature of
Hyperbolical Curves, is a Problem remarkable enough, as well
on account of its Difficulty, as its baving exercifed the Skill of
Jeveral great Matbematicians ; but as mome of the Solutions bi-
therto publifbed, the' fome of them are very elegant ones, extend
Jarther than to particular Cafés, except that given in Phil. Tranf;
N 417. without Demonfiration, I flatter myfelf that this
which 1 bave now offered, may claim an Acceptance, fince it
is clearly inveftigated by two different Methods, witbout re-
Serring to what bath been dome by Others, and the general
Confirution rendered abundantly more fimple and fit for Prac-
Zice than it there is.
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ESSAYS

On feveral Curious and Ufeful Subjetts
in Speculative amd Mixt Mathe-
maticks.

Of the Apparent Places of the Fixep S T Ars, arifing .
from the Motion of Light, and the Motion of
the Earth in its Orbiz.

PROPOSITION I

If the Velocity of the Earth in its Orbit bears any fenfible Pro-
portion to the Velocity of Light, every Star in the Heavens
muft appear difiant from its true Place ; and that by fo much

* thé more, as the Ratio of thofe Velocities approaches nearer o
2hat of Equality.

,OR, if whiletheLine  E D C
BN CG is defcribed by
@ a Particle of Light
/&€ coming from a Star
>45%%% in that Dire¢tion, the
Eye of an Obferver at T be carry’d,
by the Earth’s Motion, thro’ TG; 1

and CT be a Tube made ufe of in G T
.obferving ; and a Particle of Light, from the faid Star, be
} B oo otk
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that is, if two Arcs, A, B, be taken in the fame Ratio, as
two other Arcs, C, D, the Number of Vibrations betwixt
defcribing the two former, will be to the Number betwixt
defcribing the two latter, in one whole Defcent of the Pendu-
lum, as C»—1 to A»—1, or as D»—1 to B»—1. From whence,
and the foregoing Conclufions, not only the Law, but the
abfolute Refiftance of Mediums may be found, by cbferving
the Number of Vibrations performed therein by given Pen-
.dulums, in lofing given Parts of their Motion. -

A new Method for the Solution of Equations in
Numbers.

CASE L

When only ome Equation is given, and one Quantity (x) fo
de determined.

AKE the Fluxion of the given Equation (be it what

it will) fuppofing, x, the unknown, to be the varia-
ble Quantity ; and having divided the whole by «x, let the
Quotient be reprefented by A. Eftimate the Value of x
pretty near the Truth, fubftituting the fame in-the Equation,
as alfo in the Value of A, and let the Error, or refulting,
Number in the former, be divided by this numerical Value
of A, and the Quotient be fubtracted from the faid former
Value of x; and from thence will arife a new Value of that
‘Quantity much nearer to the Truth than the former, where-
with proceeding as before, another new Value may be had,
and fo another, &e, ’till we arrive to any Degree of Accu-

racy defired. .
Y CAS
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CASE If.

When there are two Equations given, and as many Ruyantities
(% and y) to be determined,

AKE the Fluxions of both the Equations, confidering
x and y as variable, and in the former colle@ all the
Terms, affe@ted with x, under their proper Signs, and having

divided by «, put the Quotient = A ; and let the remaining
Terms, divided by y, be reprefented by B: In like manner,
having divided the Terms in the latter, affeted with &, by «,
let the Quotient be put = 4, and the reft, divided by y, =4,
Aflume the Values of x and y pretty near the Truth, and.
fubftitute in both the Equations, marking the Error'in each,.
and let thefe Errors, whether pofitive or negative, be figni-
fied by R and r refpe@ively : Subftitute likewife in the Va

lues of A, B, 4,5, and let 25— and $8=4 pe convert-

ed into Numbers, and refpectively added-to the former Va-
Tues of » and y; and thereby new Values of thofe Quanti-
ties will be obtained ; from whence, by repeating the Ope-
ration, the true Values may be.approximated ad Jbitum.

Note, 1. That every Equation is firft to be fo reduced by
Tranfpofition, that the Whole may be equal to Nothing.

2. That, if after the firft Operation, the Value of x or
» be not found to come out pretty nearly as affumed, fuch
Value is not to be depended on, but a-new Eftimation made,
and the Qperation begun again,

3+
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3. That, the above Method, for the general part, when
x and y are near the Truth, doubles the Number of Places

at cach Operation, and only converges flowly, when the Di-
vifor A, A b—aB, at the fame time converges to nothing..

EXAMPLE L

ET 300x — x%— 1000 be given =0; to find a Va-

lue of x. From 300x — 3x*x, the Fluxion of the
given Equation, having expunged », (Cafe L.) there will be
300 — 3xx-: A: And, becanfe it appears by Infpe@ion,
that the Quantity j00x —x3, when x is = 3, will be lefs,
and when x =4, greater than 1000, I eftimate « at 3.5,
and fubftitute inftead thereof, both in the Equation and in
the Value of A, finding the Error _in the former = 7.12 5
and the Value of the latter = 263.25: Wherefore, by taking

Lﬁ;zz‘s =.027 from 3.5 there will remain 3.473 for a new

Value of x; with which proceeding as before, the next Er--
ror, and the next Value of A, will come out .00g62 518,
and 263.815 refpetively ; and from thence the third Value
of x = 3.472963 51 ;- which is true, at leaft, to 7 or 8 Places.

EXAMPLE IL

ET vV T—x o V1I—2%% 4/ 1—3%x} —2= 0.

This in Fluxions will be e — —— —
.__9'“,;’,_ = ! -_— 2%
P and therefore A, here, Ve e

V_9x’ o3 wherefore if x be fuppofed = .5, it will become

2Vi--53x3
—3.545 :. And, by fubftituting 0.5 inftead of » in the
given

\

24



RMIT Geospatial Science

(84))
;-givcn Equation, the Esror will be found 204 ; therefore

= 545 —=%_ (equal — .057) fubtrated from .5, gives .557 for

-the next Value of -x; from whence, by proceeding as be-
.fore, the next following will be found .5516, &e.

‘EXAMPLE I

ET there be given the Equations y 44/ y* == x* —
10=0, and ¥+ yy+x—12=0; to find x
and y.
"The Fluxions here being y +¢% and x 4 :/!j_j:;
xx 7]

P 2y . | ix
I = VJJ—xx 4 711+x Vir¥=
. — J =
we have A equal “”‘”, B equal 1 =t a

: b= e (Cafe IL.

'I+V1-J'+r’an‘d 5 Viyyt= ( o 1L)
Let x be fuppofed equal 5, and y equal 6 ; then will R
‘equal — .68, 7 equal — .6, A equal — 1.5, B equal 2.8,

a equal 1.1, bequal 9; therefore —5—‘5 = .23, -an

aR—Ar
Ab—aB

523, and 6.37 refpe@ively ; which are as near the Truth
as can be exhibited in three Places only, the next Values
coming out 5.23263 and 6.36898.

= .37, and the new Values of x and y equal to

Note, When Equations are given to be folved in this
mmanner, it will be convenient, that they be firft of all re-
duced to the moft commodions Forms, to facilitate the Ope-

. raticns, whether into Fra&ions or Surds, or wice wverfa ¢
For Inftance, the Equations in the laft Example had been
much
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much eafier folved, had they been firft reduced, out of Surds,
1020y —¥¥x¥ — 100=0, and yy —x x - 25X — 144
equal o, or, by exterminating y, and working accord-
ing to Café¢ I. whereas, on the other hand, to have reduced
the Equation, in the preceding Example, out of Surds
(as is ufual in other Methods) would have rendered the
Trouble of Solution almoft infuperable.

EXAMPLE. 1v.

LET 49X ¥ — == s =25 X 1 — 5, =0, and 81 x
—_—— 2 = .
1— 5 —49x1 2 = =0
Here, taking the Fluxions of both the Equations, and!
proceeding according to Café 1I. we have A equal” 49 x

=~ §ox =_98.\' —_— Ox:A -
vt Py — O =1

~+ 49 X —t — -.—;— — -l—_-;_x-—il’;-, and 6::’-:-;-;—. -+ 49 x X

Suppofe x=.8, and y = .6; then will be found R = 45,

r=12.66, A=68, B= 20.7, @a=-—131, b= 146, and
the next Values of x and y equal to .799 and . 582; with
which, repeating the Operation, the next following will come
out .79912 and .§8138, both which are. true, at leaft; . to 4.
Places: But, if a greater Exacnefs thould be.defired, let the.

Operation be once more repeated, and then the rext Values
will be true to double thofe Places.

N. B. Altho’ in feveral Cafes it happens, that the required: -
Values, from the Equations themfelves, cannot be affumed:

Z. near.
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near the Truth without fome Attention: and Trouble:; yee,
from the Nature of the Problem from whence thofe Equa-

tions are derived, when that is known, the Trouble may be
.avoided, and the Thing effe¢ted without any great Difficul- -

ty : For inftance, tho’ it is not ex{y. to percsive, that y. and:

x are about % and % in the laft Example ; yet, when it is

known, that 1, », and g, are the Sides of a Plain Triaqg!e’

——aivw = S &8I L 02 & 2 - esias

wherein Lines, drawn to bifect cach Angle and terminate in
thofe Sides, are to one another, refpe@ively, as g, 7, and g,
the Thing then appears evident upon the firft Confideration,

EXAMPLE V

ET xx+]J-xo.eo'=.o, and X) 4y ¥ == 100 =0\
Here we fhall have A=14L:xxx~, B cqua}
1+4+L:yxy’, a=,-—:—xx’ +y"L:y,_and b equal -;—.
Xy*+4x7L: x. Now, it appearing from the firft Equa-
tion, that the greateft of the two required Quantities cannot

be lefler than 4, nor greater than §; and from the firft and
fecond together, that the Difference of x and y muft be
pretty large; otherwife x* - 97 could not be 10 times ag
great as x7 -~ y* : I therefore take x (which I fuppofe the
greater Number) equal 4.5, and y equal 2.5 ; and then by
a Table of Logarithms, or otherwife, find the next Values
of thefe Quantities to be 4.55 and 2.45; and the next fol-
owing 4.5519, &¢. and 2.4495, &s. refpeliively.
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